On Comparing Sampling Strategies

P. Mukhopadhyay and Tapati Bagchi^{*}
Indian Statistical Institute, Calcutta
(Received: March, 1990)

Summary

A comparison among several sampling strategies involving Deshparide's sampling design and Hansen-Hurwitz estimator has been made under a superpopulation model.

Key words: Horvitz Thompson estimator, Midzuno's sampling scheme, Deshpande's sampling scheme, PPS sampling.

Introduction

Consider a finite population U of N identifiable units labelled 1, 2, ..., i, ..., N. Associated with i are two real quantities (y_i, x_i) , values of a study variable 'y' and a related auxiliary variable 'x' called size measure on unit i.

Deshpande [1] considered the following modification of Midzuno's [2] sampling design for estimating the population total

$$y = \sum_{i=1}^{n} y_i$$
. His sampling design P_D is as follows:

A subsets of n distinct units out of possible $\binom{N}{n}$ subsets of U and

a number R in (O, Q) where
$$Q = \max_{s} \sum_{\overline{s}} p_k$$
, $\overline{s} = U - s$, $p_k = \frac{x_k}{X}$,

 $X = \sum_{i=1}^{n} x_k$, are chosen at random. If $R \le \sum_{i=1}^{n} p_k$'s is selected as a sample; otherwise, the process is repeated involving fresh choices of a subset and a random number in (O, Q). Here and subsequently

T.D.B. College, Raniganj (presently at Ashutosh College, Calcutta)

Table 2 (Contd.)

Cattle Crossbreds 3/4							
Order of lactation	.2	3	4	5			
2	0.09	0.89	0.85	0.96			
	(0.09)	(0.10)	(0.12)	(0.05)			
3	0.58	0.21	0.91	0.6 7			
	(0.03)	(0.10)	(0.06)	(0.26)			
4	0.36 (0.04)	0.6 4 (0.03)	0.21 (0.10)	** '			
5	0.23	0.42	0.72	0.10			
	(0.04)	(0.04)	(0.03)	(0.09)			

Cattle Crossbreds 7/8						
. 2	0.19 (0.21)	**	0.13 (0.69)	-0.37 (0.36)		
.3	0.58 (0.06)	••	0.96 (0.17)	-0.52 (1.26)		
. 4	0.21 (0.07)	0.44 (0.07)	0.24 (0.22)	-0.60 (0.24)		
5	0.05 (0.07)	0.28 (0.07)	0.52 (0.06)	••		

Note: •• Indicate inadmissible estimates. Figures in parentheses denote standard errors. Diagonal terms are heritabilities of stayability or survival. Values below diagonal are phenotypic correlations. Values above diagonal are genotypic correlations.

 $\sum_s \text{ will denote sum over all } k \, \epsilon \, s. \, \text{Similarly} \sum_s' \, \text{ will denote summation} \\ k \neq k \, \epsilon \, s. \, \text{ For this scheme,}$

$$p(s) = \left[\binom{N-1}{n}\right]^{-1} \sum_{s} p_{k}$$

$$\pi_{i} = \left[\frac{n}{N-1}\right] (1-p_{i}), \qquad (1.1)$$

$$\pi_{ij} = \frac{n(n-1)}{(N-1)(N-2)} (1-p_i-p_j),$$

where
$$\pi_{i} = \sum_{s \ni i} p(s)$$
, $\pi_{ij} = \sum_{s \ni i, j} p(s)$.

An unbiased estimator of Y is

$$e_{\rm D} = \frac{\overline{y}_{\rm s}}{\overline{x}_{\overline{\rm s}}} X \tag{1.2}$$

with
$$\overline{y}_s = \left(\frac{1}{n}\right) \sum_s y_k$$
, $\overline{x}_{\overline{s}} = \frac{1}{N-n} \sum_{\overline{s}} x_k$. Subsequently \sum and

 \sum' will denote $\sum_{k=1}^{n}$ and $\sum_{k=1}^{n}\sum_{j=1}^{n}$ respectively.

We have
$$V(e_D) = \frac{NX}{\binom{N}{n}} \sum_{s \ni \zeta} \frac{\overline{y}_s^2}{\overline{x}_s} - Y^2$$
 (1.3)

with an unbiased variance estimator

$$v(e_D) = e_D^2 - \frac{X}{n\overline{x}_s} \left[\sum_s y_i^2 + \frac{N-1}{n-1} \sum_s' y_i y_j \right],$$
 (1.4)

 ζ denoting the sample space.

By using $p_i'=1-(N-1)$ p_i in place of p_i the above design can be made a πp_i ($\pi_i \alpha p_i$, $i=1,2,\ldots,N$) design, p_D , (say) for which it is required,

$$\overline{X}_s > \frac{N(n-1)}{n(N-1)} \overline{X} \quad \forall \quad s$$
, (1.5)

$$\overline{x}_s = \frac{1}{n} \sum_{s} x_k$$
, $\overline{X} = \frac{1}{N} \sum_{s} x_k$. We note that both Midzuno's

design and D-design, when made πps have identical values of π_i and π_{ij} and hence give the same values of $V(e_{HT})$, e_{HT} denoting the Horvitz-Thompson estimator.

In what follows we shall compare the strategies (denoting by ppswr, e_{pps} , probability proportional to size with replacement scheme and the corresponding Hansen-Hurwitz estimator respectively),

(i)
$$(p_D, e_D) = H_o$$

(ii)
$$(ppswr, e_{pps}) = H_1$$

(iii)
$$(p_D, e_{HT}) = H_2$$

(iv)
$$(p_{D'}, e_{HT}) = H_3$$

under the following superpopulation model. It is assumed $\mathbf{y} = (y_1, y_2, \dots, y_N)$ is a realisation of a vector of random variables $\mathbf{Y} = (Y_1, Y_2, \dots, Y_N)$, $(Y_1 \text{ being the random variable corresponding to } y_1)$, following a joint probability distribution ξ with

$$\mathcal{E} (Y_i \mid x_i) = \beta(1-p_i)$$

$$\mathcal{V} (Y_i \mid x_i) = \sigma_i^2 \qquad i = 1, 2, ..., N$$

$$\mathcal{E} (Y_i, Y_i' \mid x_i, x_i') = 0 \quad i \neq i'.$$
(1.6)

 $\xi, \not Y$, ξ denoting respectively expectation, variance and covariance with respect to $\xi.$

A strategy H_i will be said to be better than H_j (H_i) if $\mathcal{E}[V(H_i)] \leq \mathcal{E}[V(H_j)]$, $V[(H_k)]$ denoting design-variance of H_k , k = 0, 1.2.3.

2. Main Results

We have

$$V(H_o) = \left(\frac{N-n}{n}\right)^2 \left[\binom{N-1}{n}\right]^{-1} \left[\sum \lambda_i Y_i^2 + \sum' \lambda_{ij} Y_i Y_j\right] - Y^2$$
 (2.1)

where,

$$\lambda_i = \sum_{s \ni i} \left(1 - \sum_s p_k\right)^{-1}, i = 1, 2, ..., N$$
 (2.2)

$$\lambda_{ij} = \sum_{s \ni i, j} \left(1 - \sum_{s} p_{k}\right)^{-1}, i \neq j = 1, 2, ..., N$$
 (2.3)

$$V(H_1) = \frac{1}{n} \left[\sum \frac{Y_1^2}{p_1} - Y^2 \right]$$
 (2.4)

$$V(H_2) = \left(\frac{N-1}{n}\right) \sum_{i} \left[\frac{Y_i^2}{(1-p_i)}\right] + \left(\frac{N-1}{n}\right)^2 \sum_{i} \left[\frac{Y_i Y_j}{(1-p_i)(1-p_j)}\right]$$

$$\left[\frac{n(n-1)}{n}\right] (1-p_i-p_i) - V^2$$

$$\left[\frac{n(n-1)}{(N-1)(N-2)}\right](1-p_i-p_j)-Y^2$$
(2.5)

$$V(H_3) = \frac{1}{n} \sum_{i} \left(\frac{Y_i^2}{p_i} \right) + \frac{n-1}{n(N-1)(N-2)}$$

$$\sum_{i} \left[\frac{Y_i Y_j}{p_i p_j} \left\{ (N-1) (p_i + p_j) - 1 \right\} \right] - Y^2$$
(2.6)

Writing $\delta_k = \mathcal{E}[V(H_k)], k = 0, 1, 2, 3,$

$$\delta_{o} = \beta^{2} \left[\left(\frac{N-n}{n} \right)^{2} \left\{ \left(\frac{N-1}{n} \right) \right\}^{-1} \left\{ \sum_{i} \lambda_{i} (1-p_{i})^{2} + \sum_{i} \lambda_{ij} (1-p_{i}) (1-p_{j}) \right\} - (N-1)^{2} \right] + \sum_{i} \sigma_{i}^{2} \left[\left(\frac{N-n}{n} \right)^{2} \lambda_{i} \left\{ \left(\frac{N-1}{n} \right) \right\}^{-1} - 1 \right]$$
(2.7)

$$\delta_1 = \frac{\beta^2}{n} \left[\sum \left(\frac{1}{p_i} \right) - N^2 \right] + \frac{1}{n} \sum \sigma_i^2 \left[\sum \left(\frac{1}{p_i} \right) - 1 \right]$$
 (2.8)

$$\delta_2 = \sum \sigma_i^2 \left[\frac{(N-1)}{n(1-p_i)} - 1 \right]$$
 (2.9)

$$\delta_{3} = \beta^{2} \left[\frac{\frac{1}{n} \sum (1-p_{i})^{2}}{p_{i}} + \frac{n-1}{n(N-1)(N-2)} \right]$$

$$\sum_{i} \frac{(N-1)(p_{i}+p_{j})-1}{p_{i} p_{j}} (1-p_{i})(1-p_{j})-(N-1)^{2} + \sum_{i} \sigma_{i}^{2} \left[\frac{1}{np_{i}} - 1 \right]$$
(2.10)

Lemma 1. For the sampling design pD.

$$\lambda_{i} \ge {N-1 \choose n-1} \frac{N-1}{(N-n)(1-p_{i})} = \alpha_{i} \quad (\text{say})$$

$$i = 1, 2, ..., N; \qquad (2.11)$$

$$\lambda_{ij} \ge {N-2 \choose n-2} \frac{N-2}{(N-n)(1-p_i-p_j)} = \alpha_{ij}$$
 (say)
 $i \ne j = 1, 2, ..., N;$ (2.12)

Proof. Since arithmetic mean ≥ harmonic mean,

$$\left[\binom{N-1}{n-1}\right]^{-1} \sum_{s \ni 1} \left(1 - \sum_{s} p_{k}\right) \ge \binom{N-1}{n-1} \left[\sum_{s \ni 1} \left(1 - \sum_{s} p_{k}\right)^{-1}\right]^{-1}$$

Hence the lemma.

Inequality (2.12) follows similarly.

Theorem 1. Ho H1 if

$$\alpha_{i} \le \lambda_{i} \le {N-1 \choose n-1} \left\lceil \frac{n}{N-n} \right\rceil \left\lceil \frac{1+(n-1)p_{i}}{np_{i}} \right\rceil = \mu_{i} \text{ (say)}$$
 (2.13)

and

$$\begin{split} &\frac{\binom{N-1}{n-1}}{N-n} \left[\ (N-1)^2 + \frac{(N-2) \ (n-1)}{N-1} \sum_{i=1}^{N} \frac{(1-p_i) \ (1-p_j)}{1-p_i-p_j} \right] \\ &\leq \sum_{i=1}^{N} \sum_{j=1}^{N} \ \lambda_{ij} \ (1-p_i) \ (1-p_j) \\ &\leq \frac{\binom{N-1}{n-1}}{N-n} \left[\sum_{i=1}^{N} \frac{(1-p_i)^2}{p_i} + (N-1)^2 \ (n-1) \right] \end{split}$$

where $\lambda_{ii} = \lambda_i$, i = 1, 2, ..., N.

Proof.

$$\delta_1 - \delta_0 = b\beta^2 + \sum_i c_i \sigma_i^2$$
 (2.15)

where

$$b = \sum \left[\frac{(1-p_i)^2}{np_i} - \frac{(N-1)^2}{n} \right] - \left[\frac{N-n}{n} \right]^2 \left[\binom{N-1}{n} \right]^{-1} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{ij} (1-p_i) (1-p_j) + (N-1)^2$$
(2.16)

$$c_{i} = 1 + (1/n) \left[\left(\frac{1}{p_{i}} \right) - 1 - \frac{(N-n)^{2}}{n} \lambda_{i} \left\{ \binom{N-1}{n} \right\}^{-1} \right]$$
 (2.17)

Now $\delta_1 - \delta_0 \ge 0$ if

$$b \ge 0$$
 and $c_i \ge 0 \forall i = 1, 2, ..., N.$ (2.18)

(2.18) combined with lemma 1 gives (2.13) and (2.14).

Example 1. Consider the following values.

N=5, n=2; p_1 =0.14, p_2 =0.20, p_3 =0.21, p_4 =0.22 and p_5 =0.23

Here

λ ₁	6.20341	αı	6.20	, μ1	10.86
λ ₂	6.68859	α_2	6.67	μ ₂	8.00
λ3	6.77348	α ₃	6.75	μз	7.68
λ4	6.85921	α 4	6.83	μ4	7.39
λ₅	6.94558	α ₅	6.92	μ ₅	7.13
λ ₁₂	1.51515	λ23	1.69492	λ ₃₄	1.75439
λ ₁₃	1.53846	λ24	1.72414	λ ₃₅	1.78571
λ ₁₄	1.56250	λ25.	1.75439	λ45	1.81818
λ ₁₅	1.58730				<u></u>

(Note that $\lambda_{ij} = \lambda_{ji}$, i, j = 1, 2, ..., N). Here

$$\sum_{1}^{5} \sum_{1}^{5} \lambda_{ij} (1-p_i) (1-p_j) = 43.31206.$$

Which is non-negative if (2.22) holds.

Example 4. For the population in Example 1,

$$\sum' \{ (N-1)(p_i + p_j) - 1 \} \frac{(1-p_i)(1-p_j)}{p_i p_j} = 190.29306.$$

Again $(N-1)^3 (N-2) = 192$

Therefore, (2.22) is satisfied.

Actually,
$$\delta_1 - \delta_3 = 0.07112\beta^2 + 0.5 \sum_i \sigma_i^2$$

i.e., $H_3 \mid H_1$.

Considering H2 and H3

$$\delta_3 - \delta_2 = b_4 \beta^2 + \sum_i m_i \sigma_i^2$$
 (2.23)

Where
$$b_4 = \frac{1}{n} \left[\sum_{i=1}^{n} \left\{ \frac{(1-p_i)^2}{p_i} + \frac{n-1}{(N-1)(N-2)} \right\} \sum_{i=1}^{n} \left[(N-1)(p_i + p_j) - 1 \right] \right]$$

$$\left\{ \frac{(1-p_i)(1-p_j)}{(p_i p_j)} \right\} - n(N-1)^2$$

and
$$m_i = \frac{1 - Np_i}{np_i (1 - p_i)}$$

Now $m_i \ge 0 = > 1 - Np_i \ge 0 = > p_i \le \left(\frac{1}{N}\right) \ \forall \ i = 1, 2, \ldots, N;$ but since $\sum_{i=1}^{N} p_i = 1$, the only possible value of $p_i = \frac{1}{N} \ \forall \ i = 1, 2, \ldots, N$, when $\delta_2 = \delta_3$.

Thus when σ_1^2 is arbitrary we can not come to any definite conclusion about superiority of one to the other.

Theorem 5. If
$$\sigma_i^2 \propto p_i (1-p_i)$$
 and $p_i + p_j \ge \frac{1}{N-1}$, $i \ne j = 1, 2, ..., N$.

(2.24)

then $H_2 \mid H_3$.

Proof. Putting $\sigma_i^2 = K p_i (1-p_i)$, K being a constant, in (2.23) we get $\sum m_i \sigma_i^2 = 0.$ Also when $p_i + p_j \ge \frac{1}{N-1}$, $1 \le i \ne j \le N$, $b_4 \ge 0$. Hence the theorem.

Example 5. For the population in Example 1., the second set of conditions in (2.24) holds. Here

$$\delta_3 - \delta_2 = 0.32790\beta^2 > 0$$
. Hence $H_2 \mid H_3$.

3. Discussion

Under some situations the value of the main variable may be inversely related to its (only available) size-measure x, when the model (1.6) may be applicable. Under this model the performance of H_1 is worst among the strategies considered, which is not surprising, as H_1 should be used when y values vary directly with x-values. The main point of interest is comparison among H_0 , H_2 and H_3 all of which involve D-sampling design, in which p(s) being proportional to the total size-measure of the units in the complementary subset, the model considered here seems to be of interest. Under certain conditions H_2 seems to be the best choice among H_0 , H_2 and H_3 in the sense of minimum average variance.

REFERENCES

- [1] Deshpande, M.N., 1977. A new sampling procedure with varying probabilities. Jour. Ind. Soc. Agr. Stat. 30, 110-114.
- [2] Midzuno, M., 1952. On the sampling system with probability proportional to sum of sizes. *Ann. Inst. Stat. Math.* **3**, 99-107.